
Trial-Based Dynamic Programming for Multi-Agent Planning

Feng Wu
School of Computer Science

University of Sci. & Tech. of China
Hefei, Anhui 230027 China

wufeng@mail.ustc.edu.cn

Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003 USA
shlomo@cs.umass.edu

Xiaoping Chen
School of Computer Science

University of Sci. & Tech. of China
Hefei, Anhui 230027 China
xpchen@ustc.edu.cn

Abstract

Trial-based approaches offer an efficient way to solve single-
agent MDPs and POMDPs. These approaches allow agents
to focus their computations on regions of the environment
they encounter during the trials, leading to significant com-
putational savings. We present a novel trial-based dynamic
programming (TBDP) algorithm for DEC-POMDPs that ex-
tends these benefits to multi-agent settings. The algorithm
uses trial-based methods for both belief generation and policy
evaluation. Policy improvement is implemented efficiently
using linear programming and a sub-policy reuse technique
that helps bound the amount of memory. The results show
that TBDP can produce significant value improvements and
is much faster than the best existing planning algorithms.

Introduction
We present a trial-based dynamic programming (TBDP) ap-
proach for planning in multi-agent settings, and show that
it yields better solutions and is much faster than the state-
of-the-art planning algorithms. When multiple cooperative
decision-makers operate under uncertainty, they must reason
about an extremely large set of possible outcomes. A further
complication in these settings is the fact that each agent may
have to make decisions based on different partial informa-
tion about the overall situation. This problem arises in such
domains as cooperative robots, sensor networks and com-
munication networks. A useful model to study these prob-
lems is the decentralized partially observable Markov deci-
sion process (DEC-POMDP). The model has been shown to
be NEXP-complete (Bernstein et al. 2000), leading to ex-
tensive efforts to develop efficient approximate algorithms.

The latest dynamic programming (DP) approaches for
DEC-POMDPs such as memory-bounded dynamic pro-
gramming (MBDP) (Seuken & Zilberstein 2007b) and its
successors (Seuken & Zilberstein 2007a; Carlin & Zilber-
stein 2008; Dibangoye et al. 2009; Amato et al. 2009) have
shown to outperform other approximation methods based on
game theory or gradient descent, while having linear com-
plexity over the horizon. However, they still suffer from
limited scalability and cannot solve large problems such as
multi-robot navigation. This is largely due to the “curse of

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dimensionality” – planning in these domains is challeng-
ing because of the high dimensional state, action and ob-
servation spaces, which also grow exponentially with the
number of agents. Trial-based approaches such as real-
time dynamic programming (RTDP) (Barto et al. 1995;
Geffner & Bonet 1998) have shown to be very efficient
in single-agent (PO)MDPs. They focus on computations
needed to make improvements locally, but overall converge
to good approximate solutions.

Extending trial-based methods to multi-agent settings is
not straightforward because arbitrary trials without consider-
ing the other agents’ future behavior will lead to miscoordi-
nation. The novel approach we introduce, TBDP, uses trial-
based methods in each iteration both to identify the most
useful states and to evaluate the candidate policies. We com-
bine several advantages of policy improvement approaches
proposed earlier to efficiently search the space of stochas-
tic policies. Like RTDP-based algorithms, our approach can
easily utilize the power of multiple processors, thus provid-
ing additional opportunities to scale up planning and learn-
ing algorithms in multi-agent domains. To the best of our
knowledge, this work is the first trial-base approach to solve
DEC-POMDPs and is also the first to lend itself to an ef-
ficient multi-processor implementation. Our experimental
results show large improvements in solving standard bench-
mark problems and the ability to tackle larger domains that
cannot be solved by existing algorithms.

The paper starts with background on the DEC-POMDP
model and the existing dynamic programming solutions. We
then describe the trial-based approach, addressing the issues
of belief generation, policy improvement and policy evalua-
tion. This is followed by the details of the multi-processor
implementation of policy evaluation. Finally, we examine
the performance of these algorithms on a set of test prob-
lems and conclude with a discussion of future work.

Decentralized POMDPs
The decentralized POMDP model is an extension of the
partially observable Markov decision process (POMDP) to
multi-agent settings. We adopt the DEC-POMDP frame-
work and notation (Bernstein et al. 2000), but our approach
and results apply to equivalent models such as MTDP (Py-
nadath & Tambe 2002) and POIPSG (Peshkin et al. 2000).
This section describes the model and existing algorithms.

The DEC-POMDP Model
Formally, an n-agent DEC-POMDP is defined as a tuple
〈S, {Ai}, P, {Ωi}, O,R, T, bT 〉, where
• S is a finite set of states, bT ∈∆(S) is a start distribution.
• Ai is a finite set of actions for agent i, and
~a = 〈a1, a2, · · · , an〉 is a joint action, where ai ∈ Ai.
• P (s′|s,~a) is a transition function.
• Ωi is a finite set of observations for agent i, and
~o = 〈o1, o2, · · · , on〉 is a joint observation, where oi ∈ Ωi.
• O(~o|s′,~a) is an observation function.
• R(s,~a) is a reward function, and T is the horizon.
The solution of a DEC-POMDP is to find a set of n policies,
one for each agent, that maximizes the expected joint re-
ward. Policies can usually be represented as decision trees.
Let qi denote a policy tree and Qi a set of policy trees for
agent i. Q−i denotes the sets of policy trees for all agents
but agent i. A joint policy ~q = 〈q1, q2, · · · , qn〉 is a vector of
policy trees and ~Q = 〈Q1, Q2, · · · , Qn〉 denotes the sets of
joint policies. The value of a joint policy ~q can be claculated
as follows:

V (s, ~q) = R(s,~a)+
∑
s′,~o

P (s′|s,~a)O(~o|s′,~a)V (s′, ~q~o) (1)

where ~a are the actions defined at the root of trees ~q, and ~q~o
are the subtrees of ~q after ~o have been observed.

Communication between agents is in fact modeled im-
plicitly by a DEC-POMDP because the observations of one
agent depend on the actions of the others, thereby providing
some form of communication. While the execution of poli-
cies is inherently decentralized, the computation of policies
can be centralized and can make use of the DEC-POMDP
model, particularly when planning is performed offline.

Dynamic Programming for DEC-POMDPs
In multi-agent settings, each agent must reason about the
possible future policies of the others in order to choose op-
timal actions. This can be done using a multi-agent be-
lief state – a probability distribution over system states and
the policies of all other agents: bi ∈ ∆(S × Q−i). Such
belief states were used in an early dynamic programming
approach for decentralized POMDPs – Joint Equilibrium-
based Search for Policies (DP-JESP), which first generates
a set of multi-agent belief states by keeping the policies of
other agents fixed, and then computes the value and builds
a policy for one agent at a time (Nair et al. 2003). This
only guarantees local optimality and still leads to exponen-
tial complexity due to the exponential number of possible
belief points.

An exact dynamic programming algorithm for DEC-
POMDPs was developed by Hansen et al. (2004). The al-
gorithm builds the policies from the last step towards the
first step. In every iteration, it first performs an exhaustive
backup for each policy tree of the previous iteration, and
then prunes dominated policies. Although it can produce a
globally optimal solution, this approach runs out of memory
very quickly because the number of possible policies grow
at a double-exponential rate over the horizon.

Point-Based DP (PBDP) exploits the fact that some re-
gions of the belief space are not reachable in many domains
(Szer & Charpillet 2006). Unlike DP-JESP, which considers
the entire policies of the other agents, PBDP generates a full
set of current-step policies via a backup step, and identifies
the reachable beliefs by enumerating all possible top-down
histories. However, it still leads to double-exponential worst
case complexity due to the large number of possible policies
and histories.

More recently, memory-bounded DP (MBDP) has been
introduced, offering linear time and space complexity over
the horizon (Seuken & Zilberstein 2007b). At each iteration,
it employs top-down heuristics to identify the most useful
belief states and keeps only a fixed number of best policies
for these belief states. Hence, it is memory-bounded and
can solve much larger problems with essentially arbitrary
horizons. One of the major challenges is the backup oper-
ation, which still has exponential complexity over the ob-
servations. Several successive works have been proposed to
improve the performance of the backup operation, but they
still have exponential complexity in the worst case and scal-
ability remains limited.

We present a novel dynamic programming approach for
DEC-POMDPs, namely multi-agent trial-based dynamic
programming (TBDP). We combine the main advantages of
DP-JESP with MBDP to avoid the expensive backup oper-
ation. Furthermore, we address effectively the complexity
of policy evaluation, which presents another computational
bottleneck, particularly in problems with large state spaces.

Trial-Based Dynamic Programming
One important class of (PO)MDP algorithms is based on
real-time dynamic programming (RTDP), where the algo-
rithms employ trial-based approaches to improve the value
of reachable (belief) states. In trial-based algorithms, agents
can interact with the environment and focus their computa-
tion only on the regions that they encounter. Hence, each im-
provement of policies (or value) can be done locally, instead
of updating the entire (belief) state space. This has been
proved to be an efficient way to address the curse of dimen-
sionality. The advantages of trial-based solutions have been
amply demonstrated by the original work on RTDP and its
successors (McMahan et al. 2005; Smith & Simmons 2006;
Bonet & Geffner 2009; Sanner et al. 2009). Moreover, our
algorithm allows agents to interact with the environment by
simulating the model, or assuming that there is a central
camera to observe the global state during the planning phase.

At each iteration, TBDP first samples a state distribution
by multiple trials, then it makes an improvement to each
joint policy. Policy evaluations are also done by sufficient
trials. Algorithm 1 shows the main TBDP procedure. The
rest of this section describes each part in detail.

Belief Generation
In single-agent POMDPs, the belief state is a probability dis-
tribution over domain states, b ∈ ∆(S). In DEC-POMDPs,
a belief about the underlying system state is not sufficient
because agents have to reason about the possible future be-
havior of all teammates to choose actions. Some researchers

Algorithm 1: Trial-Based DP for DEC-POMDPs
Generate a random joint policy
for t=1 to T do // bottom-up iteration

foreach unimproved joint policy ~q t do
Sample a state distribution bt by trials
repeat

foreach agent i do
Fix the policies of all the agents except i
begin formulate a linear program

if V (s′, ~q t−1) is required then
Evaluate s′, ~q t−1 by trials

end
Improve the policy qti by solving the LP

until no improvement in the policies of all agents

return the current joint policy

tried to address this by defining beliefs over other agents’
beliefs, but this could lead to infinite regress. The multi-
agent belief state is another way to address this using a
distribution over both system states and other agents’ poli-
cies. In bottom-up dynamic programming such as PBDP and
MBDP, these policies are created by backing up the policies
of the previous iteration. We focus here on computing a top-
down state distribution or so-called joint belief.

Generally, the joint belief state (state distribution) of the
current step, b′, is computed recursively using Bayes’ rule:

b′(s′) = αO(~o|s′,~a)
∑

s∈S
P (s′|s,~a)b(s) (2)

where α is the normalization factor and b is the belief state of
the previous step. However, this is very time-consuming due
to the summation over all states. In TBDP, we use trial-based
sampling as shown in Algorithm 2. It is straightforward to
perform trials either by simulating the model or interacting
with the real environment. In order to identify the reachable
states, sampling is performed using several types of heuristic
policies, such as random policies and solutions of the corre-
sponding MMDP (Boutilier 1996). Notice that the joint be-
liefs generated by Algorithm 2 are very sparse and can thus
be stored in sparse vectors to speedup the computation.

Policy Improvement
A policy tree is a conditional plan defined recursively with
an action at the root and a subtree for each observation. Dur-
ing execution, each agent follows a path based on its history
of local observations and selects an action at each node. Un-
like deterministic policy trees used in previous approaches,
we allow for stochastic transitions and stochastic action se-
lection, as this helps make policy improvement very effi-
cient. Such stochastic policies are similar to stochastic fi-
nite state controllers used in infinite-horizon problems or
so-called mixed strategies in game theory.

Formally, we define the depth-t stochastic policy for agent
i, qi ∈ Qt

i, recursively to be a tuple 〈ψi, ηi〉, where
• ψi is an action selection function which defines a proba-

bility distribution over the actions p(ai|qi).
• ηi is a transition function which specifies the probability
p(q′i|qi, oi) of sub-policy q′i ∈ Q

t−1
i when oi is observed.

Algorithm 2: Trial-Based Sampling
Input: t: the sampled step, δ: the heuristic policy
b(s)← 0 for every state s ∈ S
for several number of trials do

s← draw a state from the start distribution bT

for k=T downto t do // top-down trial
~a← execute a joint action according to δ
s′, ~o← get the system responses
s← s′

b(s)← b(s) + 1

return the normalized b

The functions ψi and ηi define a conditional distribution
p(q′i, ai|qi, oi) = p(ai|qi)p(q′i|qi, oi). To start, the size of
Qt

i is set to be fixed and identical for every t and i, and each
policy qi ∈ Qt

i is initialized with random parameters.
The value function of a joint stochastic policy ~q at state s

can be computed by the following equation:
V (s, ~q) =

∑
~a

∏
i p(ai|qi)R(s,~a) +

∑
~a,~o,s′

P (s′, ~o|s,~a)∑
~q ′

∏
i p(q

′
i, ai|qi, oi)V (s′, ~q ′) (3)

where P (s′, ~o|s,~a) = P (s′|s,~a)O(~o|s′,~a). For a given
joint belief state b, the value of the joint stochastic policy
~q is V (b, ~q) =

∑
s b(s)V (s, ~q). Thus, the policy improve-

ment step is to find the parameters of ~q ∗ which maximize
the value at a joint belief state b: ~q ∗ = arg max~q V (b, ~q).

We adopt an improvement strategy that was first intro-
duced by Nair et al. (2003) and refined by Bernstein et
al. (2005). The basic idea is to improve the policy of one
agent at a time while keeping the other policies fixed. This
is repeated until no improvement is possible. Given agent i’s
policy qi, the process of searching for new policy parameters
can be formulated by the linear programming (LP) shown in
Table 1, which maximizes the contribution of agent i’s pol-
icy to the overall value. The constraints guarantee that all
probabilities are positive and add up to 1. To use bounded
memory, we take the policy reuse approach introduced in
MBDP. That is, a bounded number of sub-policies are used
as building blocks for each step and reused multiple times as
components of the new policy tree. In general, we start with
a random set of policies and then improve them from the last
step back to the first step using a series of linear programs.

Policy Evaluation
Evaluating policies using Equation 3 is expensive because it
requires computing a value function for every state and joint
policy pairs. There are time-consuming summations on the
right-hand side of the equation. As mentioned earlier, the
reachable state set is very small in many domains, so it is not
necessary to evaluate all state and joint policy pairs in this
process. Notice that the value functions are used only when
formulating the linear program in Table 1. In TBDP, we use
a lazy evaluation approach whereby the values are computed
only when needed, in order to save time and memory.

More precisely, the evaluation of V (s′, ~q ′) is required
given agent i’s sub-policy q′i in Table 1 when

P (s′, ~o|b,~a)
∏

k 6=i
p(q′k, ak|qk, ok) 6= 0 (4)

Maximize
∑
~a

x(ai|qi)
∏
k 6=i

p(ak|qk)R(b,~a) +
∑

~a,~o,s′
P (s′, ~o|b,~a)

∑
~q ′
x(q′i, ai|qi, oi)

∏
k 6=i

p(q′k, ak|qk, ok)V (s′, ~q ′)

subject to
∑

ai
x(ai|qi) = 1,∀ai,oi

∑
q′
i
x(q′i, ai|qi, oi) = x(ai|qi), ∀aix(ai|qi) ≥ 0, ∀ai,oi,q

′
i
x(q′i, ai|qi, oi) ≥ 0.

Table 1: The linear program to improve agent i’s policy qi, where the variable x(ai|qi) represents p(ai|qi), the variable
x(q′i, ai|qi, oi) represents p(q′i, ai|qi, oi), R(b,~a) =

∑
s b(s)R(s,~a), and P (s′, ~o|b,~a) =

∑
s b(s)P (s′|s,~a)O(~o|s′,~a).

Algorithm 3: Trial-Based Evaluation
Input: s, ~q t−1, V : the value table, c: the count table
for several number of trials do

s′ ← s, v ← 0, w ← ∅
for k=t downto 1 do // forward trial

if c(s′, ~q k) ≥ numTrials then
wk ← 〈s′, ~q k, V (s′, ~q k)〉 and break

~a← execute a joint action according to ~q k

s′′, ~o← get the system responses
r ← get the current reward
wk ← 〈s′, ~q k, r〉
~q k−1 ← ~q k(~o)
s′ ← s′′

for k=1 to length(w) do // backward update
s′, ~q, r ← wk

n← c(s′, ~q), v ← v + r
V (s′, ~q)← [nV (s′, ~q) + v] /(n+ 1)
c(s′, ~q)← n+ 1

return V (s, ~q t−1)

If this term is equal to 0, the coefficient of x(q′i, ai|qi, oi) in
Table 1 is always 0. In that case there is no need to compute
V (s′, ~q ′). Therefore, instead of evaluating all state and joint
policy pairs in advance, we postpone the evaluation to the
improvement steps. This saves a lot of time and memory by
avoiding evaluating the states which are never reachable or
used in the LP. Moreover, the trial-based approach is much
more efficient than solving Equation 3 and it provides a good
approximation of the exact value in our experiments.

The trial-based evaluation process is presented in Algo-
rithm 3. Intuitively, the main disadvantage of trial-based
evaluation is that each trial has to travel through the future
policies for several times. To evaluate the value of ~q t, it
needs to visit the policies ~q t−1 · · · ~q 1. For domains with
long horizons, this may take a lot of time especially for the
last iteration. In TBDP, we use a hash table c(s, ~q) to count
the number of trials which have been performed per state
and joint policy pair 〈s, ~q〉. If 〈s, ~q〉 already has sufficient
trials, we can stop there and return the current V (s, ~q) with-
out performing more trials. Each time 〈s, ~q〉 is visited, we
increase the count c(s, ~q) by 1 and update the running aver-
age of V (s, ~q) with the value of the current trial. Therefore,
we can save substantial time by using the value of earlier
trials. This is analogous to the value update in RTDP-based
algorithms of single-agent (PO)MDPs. Similarly, we also
have the convergence property as below:

Property 1 If the sub-policies and states are visited in-
finitely often by trials, the value computed via trial-based
evaluation converges to the exact policy value.

Algorithm 4: Asynchronous Policy Evaluation
repeat in parallel// run on other processors

t← the current step of the main process
foreach joint policy ~q of step t-1 do
S ← sort states in descending order by c(s, ~q)
foreach s ∈ S do

while c(s, ~q) < numTrials do
V (s, ~q)← evaluate s, ~q by trial

until the main process is terminated

Asynchronous Implementation
One major advantage of RTDP-based algorithms is that it
does not backup states simultaneously or in any systemat-
ically organized fashion. It is suitable for multi-processor
systems with communication delays and without a common
clock. Multi-processor implementations have obvious util-
ity in speeding up computation and thus have practical sig-
nificance to solve large problems using computer clusters.
Our trial-based evaluation can also be implemented in an
asynchronous style as shown in Algorithm 4. Each separate
processor can choose any improved joint policy and evalu-
ate it by trials. We sort the states in descending order by
the visiting frequency c(s, ~q) so the state with high c(s, ~q)
can be evaluated first. Obviously, the policy value will be
closer to the exact value if more trials are performed. Fur-
thermore, the main algorithm can benefit from the computa-
tion of other processors by avoiding long trials.

Experiments
We evaluated our algorithm using several standard bench-
mark problems and a more challenging problem called co-
operative recycling. For the benchmark problems, we com-
pared our algorithm with the best existing methods. Since
none of the existing methods can solve the cooperative recy-
cling problem, we performed in that case an extensive eval-
uation of our algorithm with different parameters. We report
the average value and runtime over 20 runs of the algorithm
on each of the problems. Timing results measure CPU times
in seconds. TBDP was implemented in Java 1.5 and ran on
a Mac OSX machine with 2.8GHz Quad-Core Intel Xeon
CPU and 2GB of RAM available for JVM. We utilized the
Java concurrency package to manage the asynchronous pol-
icy evaluation on this multi-core machine. Linear programs
were solved using lp solve 5.5 with Java wrapper.

Common Benchmark Problems
We tested our algorithm on three standard benchmark prob-
lems: Meeting in 3×3 Grid, Cooperative Box Pushing and

Table 2: Results of Benchmark Problems (20 runs)
Horizon Algorithm Ave Value Ave Time

Meeting in a 3×3 Grid |S|=81, |Ai|=5, |Ωi|=9

100
PBIP-IPG 92.12 3084.0s

TBDP 92.8 427.1s

200
PBIP-IPG 193.39 13875.0s

TBDP 192.10 1371.9s

Cooperative Box Pushing |S|=100, |Ai|=4, |Ωi|=5

100
PBIP-IPG 598.40 181.0s

TBDP 611.0 76.3s

1000
PBIP-IPG 5707.59 2147.0s

TBDP 5857.40 1327.9s

Stochastic Mars Rover |S|=256, |Ai|=6, |Ωi|=8

10
PBIP-IPG 21.18 976.0s

TBDP 20.1 40.5s

20
PBIP-IPG 37.81 14947.0s

TBDP 38.30 119.7s

Stochastic Mars Rover. These are the hardest benchmark
domains we could find in the DEC-POMDP literature. We
compare our algorithm with the best existing method called
PBIP-IPG. As reported by Amato et al. (2009), PBIP-IPG
consistently outperforms other state-of-the-art algorithms
such as MBDP, IMBDP, MBDP-OC and PBIP. In this set
of experiments, the number of trials used in both sampling
and evaluation is 20. We show that with such a small num-
ber of trials, TBDP already performs very well compared to
PBIP-IPG. The results, presented in Table 2, show that our
algorithm produces competitive value (in most cases slightly
higher value) in much less runtime in all the tested domains.
Although our asynchronous implementation is very prelimi-
nary, it is very useful when solving a problem with a long
horizon. For example, we observed that TBDP without
asynchronous policy evaluation would run out of time for
Cooperative Box Pushing with horizon 1000. We have not
implemented TBDP on a cluster computer yet, but it should
be straightforward to utilize a parallel computing model. In
contrast, other algorithms such as PBIP-IPG do not lend
themselves naturally to parallel computing. In fact, imple-
menting PBIP-IPG in an asynchronous way is non-trivial.

The Cooperative Recycling Problem
Cooperative Recycling is a much more challenging domain
for decision-theoretical planning mainly due to the large
number of states. It is more representative of real-world ap-
plications involving cooperative robots. The structure of the
domain is adapted from a robot navigation problem in the
single-agent POMDP literature, which represents a map of a
building (Kaelbling et al. 1996).

In this domain, two robots navigate in a building and
empty recycle bins placed in certain locations. Each robot
has 5 actions (stay, turn left, turn right, turn backward and
move forward) and 4 observations indicating four types of
objects in front of the robot (wall, other robot, recycle bin
and free). The actions are stochastic with 0.8 probability of

N

E

W

S

Figure 1: Cooperative Recycling: The domain includes 49
grid cells, 12 recycle bins and 2 start positions (circles).

success. The state features are the agents’ positions and ori-
entations (N,S,E,W). Each grid cell could be occupied by at
most one robot, except for cells with recycle bins. Overall,
this problem has 37,824 states. The reward function is de-
signed such that the robots benefit from coordination. There
are two types of situations that require coordination: (1) if
two robots try to occupy the same cell without a bin, one of
them fails and they get a penalty of 5; (2) if two robots coop-
eratively empty the same bin at the same time, they get the
highest reward of 100, or just 10 if only one robot attempts to
empty a bin. Each time a bin is emptied, the problem resets
with new random robot positions. The robots get a negative
reward of -0.1 per time step they spend in the building.

Figure 2 shows both the value and runtime with different
horizons. The number of trials is fixed to 20. As expected,
the value and runtime of TBDP grow linearly with the hori-
zon. We also report two special cases: MMDP, a case where
the control of the agents is centralized with full observabil-
ity of the global states and INDEP, a case where all agents
act independently with local observability. Generally, these
two approaches provide loose upper and lower bounds on the
value of the DEC-POMDP. As shown, TBDP’s value grows
much like the upper bound and is much better than the base-
line approach without coordination. In other words, agents
can benefit from coordination using our approach. It is worth
pointing out that the MMDP approach is a very loose upper
bound; the actual optimal value may be much lower.

We tested TBDP with different numbers of trials for sam-
pling and evaluation. The horizon was set to 60 and the re-
sults (averaged over 20 runs) are shown in Figure 3. These
experiments show that the value grows as the number of
trials increases, becoming stable after about 10 trials. As
expected, runtime also grows because the set of reachable
states increases with more trials. Generally, the number of
trials provides a good trade-off between runtime and value.

-200

-100

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

V
al

ue

T
im

e
(s

)

Horizon

Upper Bound

Lower Bound

TBDP-Value
MMDP-Value
INDEP-Value

TBDP-Time

Figure 2: Cooperative Recycling with different horizons.

-140

-120

-100

-80

-60

-40

-20

 0

 20

 40

 60

 0 5 10 15 20 25 30
 0

 20

 40

 60

 80

 100

 120

V
al

ue

T
im

e
(s

)

Number of Trials

TBDP-Value
TBDP-Time

Figure 3: Cooperative Recycling with different trials.

In domains with fewer reachable states, the number of tri-
als required to produce good results should be smaller. This
demonstrates that TBDP can focus on likely states and gen-
erate good coordination policies.

Conclusion
We present a novel algorithm for multi-agent planning that
uses trial-based methods to generate belief states, improve
and evaluate policies. The algorithm, TBDP, offers a bet-
ter way to explore the domain and exploit its reachability
structure, which is particularly efficient in domains with lim-
ited state reachability. The stochastic policies introduced in
TBDP use bounded memory much like MBDP, but they can
be calculated efficiently without time-consuming backup op-
erations. TBDP employs a lazy computation strategy, evalu-
ating policies only when they are needed. Similar to RTDP,
TBDP can be easily implemented asynchronously, and take
advantage of multi-processor or multi-core machines.

The experimental results show that TBDP can compute
comparative policies with order of magnitude improvement
in runtime on several standard benchmark problems. More
importantly, it can solve problems with much larger state
spaces than previously possible, thereby improving the scal-
ability of multi-agent planning. In the future, we plan to
extend TBDP to learn the policies from direct interaction
with the environment, without a model. The algorithms and
representations used in this work open up several research
directions for planning and learning in multi-agent systems.

Acknowledgments
This work was supported in part by the Air Force Of-
fice of Scientific Research under Grant No. FA9550-08-1-
0181, the National Science Foundation under Grant No. IIS-
0812149, the Natural Science Foundations of China under
Grant No. 60745002, and the National Hi-Tech Project of
China under Grant No. 2008AA01Z150.

References
Amato, C.; Dibangoye, J. S.; and Zilberstein, S. 2009. Incremental
policy generation for finite-horizon DEC-POMDPs. In Proc. of the
19th Int’l Conf. on Automated Planning and Scheduling, 2–9.

Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learning to
act using real-time dynamic programming. Artificial Intelligence
72(1-2):81–138.
Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2000. The
complexity of decentralized control of Markov decision processes.
In Proc. of the 16th Conf. on Uncertainty in Artificial Intelligence,
32–37.
Bernstein, D. S.; Hansen, E. A.; and Zilberstein, S. 2005. Bounded
policy iteration for decentralized POMDPs. In Proc. of the 19th
Int’l Joint Conf. on Artificial Intelligence, 1287–1292.
Bonet, B., and Geffner, H. 2009. Solving POMDPs: RTDP-Bel
vs. point-based algorithms. In Proc. of the 21st Int’l Joint Conf. on
Artificial Intelligence, 1641–1646.
Boutilier, C. 1996. Planning, learning and coordination in multi-
agent decision processes. In Proc. of the 6th Conf. on Theoretical
Aspects of Rationality and Knowledge, 195–210.
Carlin, A., and Zilberstein, S. 2008. Value-based observation com-
pression for DEC-POMDPs. In Proc. of the 7th Int’l Joint Conf. on
Autonomous Agents and Multi-Agent Systems, 501–508.
Dibangoye, J. S.; Mouaddib, A.; and Chaib-draa, B. 2009. Point-
based incremental pruning heuristic for solving finite-horizon
DEC-POMDPs. In Proc. of the 8th Int’l Joint Conf. on Autonomous
Agents and Multi-Agent Systems, 569–576.
Geffner, H., and Bonet, B. 1998. Solving large POMDPs us-
ing real time dynamic programming. In AAAI Fall Symposium on
POMDPs.
Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004. Dynamic
programming for partially observable stochastic games. In Proc. of
the 19th National Conf. on Artificial Intelligence, 709–715.
Kaelbling, L. P.; Cassandra, A.; and Kurien, J. 1996. Acting under
uncertainty: Discrete Bayesian models for mobile-robot naviga-
tion. In Proc. of IEEE/RSJ Int’l Conf. on Intelligent Robots and
Systems, 963–972.
McMahan, H. B.; Likhachev, M.; and Gordon, G. J. 2005.
Bounded real-time dynamic programming: RTDP with monotone
upper bounds and performance guarantees. In Proc. of the 23rd
Int’l Conf. on Machine Learning, 569–576.
Nair, R.; Tambe, M.; Yokoo, M.; Pynadath, D. V.; and Marsella,
S. 2003. Taming decentralized POMDPs: Towards efficient policy
computation for multiagent settings. In Proc. of the 18th Int’l Joint
Conf. on Artificial Intelligence, 705–711.
Peshkin, L.; Kim, K.-E.; Meuleau, N.; and Kaelbling, L. P. 2000.
Learning to cooperate via policy search. In Proc. of the 16th Conf.
on Uncertainty in Artificial Intelligence, 489–496.
Pynadath, D. V., and Tambe, M. 2002. The communicative mul-
tiagent team decision problem: Analyzing teamwork theories and
models. Journal of Artificial Intelligence Research 16:389–423.
Sanner, S.; Goetschalckx, R.; Driessens, K.; and Shani, G. 2009.
Bayesian real-time dynamic programming. In Proc. of the 21st Int’l
Joint Conf. on Artificial Intelligence, 1784–1789.
Seuken, S., and Zilberstein, S. 2007a. Improved memory-bounded
dynamic programming for decentralized POMDPs. In Proc. of the
23rd Conf. on Uncertainty in Artificial Intelligence, 344–351.
Seuken, S., and Zilberstein, S. 2007b. Memory-bounded dynamic
programming for DEC-POMDPs. In Proc. of the 20th Int’l Joint
Conf. on Artificial Intelligence, 2009–2015.
Smith, T., and Simmons, R. G. 2006. Focused real-time dynamic
programming for mdps: Squeezing more out of a heuristic. In Proc.
of the 21st National Conf. on Artificial Intelligence, 1227–1232.
Szer, D., and Charpillet, F. 2006. Point-based dynamic program-
ming for DEC-POMDPs. In Proc. of the 21st National Conf. on
Artificial Intelligence, volume 2, 1233–1238.

