Induction in Nonmonotonic Causal Theories for
a Domestic Service Robot

Jianmin Ji! and Xiaoping Chen?

! Dept. of CSE, The Hong Kong University of Science and Technology,
jizheng@mail.ustc.edu.cn
2 Sch. of CS, University of Science and Technology of China,
xpchen@ustc.edu.cn

Abstract. It is always possible to encounter an expected scenario which
has not been covered by a certain theory for an action domain. This
paper proposes an approach to treating this problem. We reduce this
learning task into the problem of modifying a causal theory such that
the interpretations corresponding to new scenarios become a model of
the updated theory, while all the original models keep unchanged. We
illustrate our approach through a case study based on a domestic service
robot, KelJia.

1 Introduction

Nonmonotonic causal theories [5] are devoted to be a nonmonotonic formalism
for representing causal knowledge, which can be used to formalize action do-
mains, including indirect effects of actions, implied action preconditions, concur-
rent actions, nondeterministic actions, ramification and qualification constraints.
However, in practice, it is hard to model a complicated action domain completely
and there always exist unexpected scenarios which are not coved by a specific
theory. An important problem for developing an intelligent agent is how to auto-
matically modify a causal theory for an action domain so that the updated theory
can cover a new scenario once it is encountered during the agent’s exploration
of the real world.

In this paper, we attack the inductive learning problem in nonmonotonic
causal theories. We take domestic service robots as the setting, though the results
apply to other applications. Our robot is initially equipped with a causal theory
as the model of its environment, with which it provides services for its users.
In order to get more complete causal theories, we assume the robot get one or
more new scenarios through robot learning from demonstration [1], for each of
which the robot recognizes and remembers the entire history of its behaviors and
relevant fluents of the environment. Formally, this history is an interpretation of
the causal theory, but not a model of it. Therefore, we reduce the learning task
into the problem of modifying the causal theory such that this interpretation
becomes a model of the updated theory, while all the models of original theory
are still models of the updated theory. We illustrate our approach through a case
study based on a domestic service robot, KeJia [3,2]. Only the core part of this
work will be described in this short paper.



2 Nonmonotonic Causal Theories

The language of nonmonotonic causal theories [5] is based on a propositional
language with two zero-place logical connectives T for tautology and L for con-
tradiction. We denote by Atom the set of atoms, and Lit the set of literals:
Lit = Atom U {—a | a € Atom}. Given a literal I, the complement of I, denoted
by [, is —a if | is a and a if [ is —a, where a is an atom. A set I of literals is
called complete if for each atom a, exactly one of {a,—a} is in I. In this paper
we identify an interpretation with a complete set of literals.

A causal theory is a set of casual rules of the form: ¢ = 1), where ¢ and ¥ are
propositional formulas. For a causal rule r of such form, we let head(r) be its
head ¢ and body(r) its body ¢. Intuitively, the causal rule reads as “i) is caused
if ¢ is true”.

Let T be a causal theory and I an interpretation. The reduction TT of T w.r.t.
I is defined as T! = {4 | for some ¢ = 1) € T and I |= ¢ }. T' is a propositional
theory. We say that I is a model of T if I is the unique model of T7.

For example, given T1 = {p = p, ¢ = ¢, ~q¢ = —q} whose signature is {p, ¢}.
Let I = {p,q}, Tll1 = {p,q} and I is the unique model of Tlll, then I is a
model of T}. Let Iy = {-p, q}, T/ = {q}, both I and I5 are models of 772, then
I5 is not a model of T7. We can see that, T} has two models {p, ¢} and {p, —q}.

As a syntax sugar, a causal rule with variables is viewed as shorthand for the
set of its ground instances, that is, for the result of substituting corresponding
variable-free terms for variables in all possible ways.

3 Induction in Causal Theories

The induction problem considered in this paper is defined as follows. Given a
causal theory T and an interpretation I, I is not a model of T, we need to
modify T to a new causal theory 7" such that I is a model of 77 and each model
of T is still a model of T".

Before propose one of such modifications, we consider the notion of relevance.
Following the intuition behind the work of Galles and Pearl [4], relevance is
concerned with statements of the form “Changing X will alter the value of Y, if
Z is fixed”. In the setting of nonmonotonic causal theories, the world is specified
by a set of models, an atom a is related to another atom b under a set S of
literals, if changing the value of a will alter possible evaluations of b given S.

In specific, given a set M of models and a set S of literals, an atom a is
semantically related to another atom b under S w.r.t. M, if

— there exists two models 1, I> € M s.t. SU{la,lp} € I; and SU {lo,1p} C I,
— there does not exist a model I’ € M s.t. SU{l,, 1} C I,

where [, € {a,—a} and I, € {b,—b}. Note that, given M and S, the defined
relevance relation is reflexive, symmetric and transitive.

Given a causal theory T', an atom a is semantically related to an atom b in T,
if there exists a set S of literals such that a is semantically related to b under S



w.r.t. the set of models of T. However, it is NP-hard to decide where two atoms
are semantically related in a causal theory. Now, based on syntactic properties,
we propose a relaxed definition of relevance which can be computed easily.

Given a causal theory T', an atom a is syntactically related to an atom b in T'
if (1) a = b, (2) both a and b occurs in a causal rule of T, or (3) both a and b
are syntactically related to another atom c. Note that, the syntactical relevance
relation is also reflexive, symmetric and transitive.

Proposition 1. Given a causal theory T and two atoms a and b. If a is seman-
tically related to b in T, then a is syntactically related to b.

Now, based on syntactical relevance, we propose an approach for the induc-
tion problem. Given a casual theory T and an interpretation I which is not a
model of T, let tr(T,I) be the casual theory obtained from T by:

1. modifying each causal rule r € T to body(r) A head(r) = head(r), if T E
body(r) and I (= head(r); and

2. adding a causal rule L = [, for each literal [ € I such that T £ 1, where L
is the conjunction of literals which are belonged to I and in which occurred
atoms are syntactically related to the atom occurred in [.

The number of causal rules generated by the conversion is polynomial for an
interpretation in the number of literals.

Proposition 2. Given a causal theory T and an interpretation I which is not a
model of T. I is a model of tr(T,I) and every model of T is a model of tr(T,I).

Note that, we assume that the relevance relation in the domain has been
revealed by the original causal theory. With the help of such relevance relation,
not limited to I, some other interpretations might become the models of ¢tr (T, I).
Consider the causal theory T in Section 2, Iy = {—p, ¢} is not a model of 77, p
is not related to ¢, then tr(11, Iy) = Ty U{—-p = —p}. In addition to I, tr(11, I2)
has another new model {—p, —¢}.

Every new causal rule L = [ added in tr(7T,I) can be generalized by sub-
stituting variables for some constants occurred in the rule. Note that, every
model of T is still a model of the new theory. Generally, the robot can be taught
with multiple examples, which leads to some common inductive learning issues
investigated in the literature.

4 A Case Study in a Domestic Service Robot’s Domain

In this section, we demonstrate the inductive approach by a case study in a
domestic service robot’s domain.

As shown in Figure 1, there is a board putting on the edge of a table, with
one end sticking out. There is also a can on each end of the board, respectively,
keeping it balanced. The task is to pick up the can on the inside end. Note that,
the outside can may fall if the robot picks up the inside can.
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Fig. 1. Setting of the Case Study

First, following the approach in [5], we use causal rules to formalize the action
domain. The atoms are expressions of the form a; and f;, where a, f, and t are
action, fluent, and time names, respectively. Intuitively, a; is true if and only if
the action a occurs at time ¢, and f; is true if and only if the fluent f holds at t.

In this setting, we focus on the robot’s ability of ‘grasp’ and the corresponding
properties of the environment. The action names and fluent names used in the
specification are following, where X and Y are variables ranging over possible
objects in the environment:

grasp(X): the action of griping the object X and picking it up.
holding(X): the fluent that the object X is held in the grip of the robot.
— on(X,Y): the fluent that the object X is on the object Y.

— falling(X): the fluent that the object X is falling on the floor.

In addition, o is a meta-variable ranging over {on(X,Y), mon(X,Y), holding(X),
—holding(X), falling(X), - falling(X)}.
The effect of executing the action grasp(X) is described as follows:

grasp(X): = holding(X)s+1 (1)
grasp(X)e Aon(X,Y)e = —on(X,Y )41 (2)

The precondition of grasping requires the grip holds nothing:
grasp(X): A holding(Y): = L (3)
The occurrence of the action is exogenous to the causal theory:

grasp(X): = grasp(X); (4)
—grasp(X)s = —grasp(X): (5)

The initial state (at time 0) can be arbitrary:
o9 = 0p (6>
There are some restrictions among these fluents:

holding(X): A falling(X); = L (7)
on(X,Y ) A falling(Y)y = falling(X), (8)

Rule (8) specifies that falling(X) is an indirect effect of some action that causes
falling(Y') while X is on Y. The frame problem is overcome by the following
“inertia” rules:

Ot N Ot41 = 041 (9)



The causal theory formed by rules (1)—(9) represents the action domain for
the robot’s ability of ‘grasp’. Let 0 < t < m, the models of such causal theory
correspond to the histories of the action domain whose length is m. In particular,
an interpretation I is a model if and only if the state s;;1 is a successor state
of the state s; after the concurrent execution of actions A;, where s; = {f; € I |
f is a fluent name} and A; = {a; € I | a is an action name}.

During the development of our robot, there are some real scenarios that have
not been captured by a certain version of the causal theory. Particularly, in one
execution the robot recognizes that s is a successor state of an initial state sg
after the occurrence of an action ag, but the interpretation I = soU{ag}U{—ay |
action name o’ different from a} U s; is not a model of the causal theory with
0 <t < 1. In this case, we can use our inductive approach to modify the causal
theory so that I becomes its model and all other models keep unchanged.

In the setting, with the current causal theory, the robot can not predict the
end state in that the outside will fall after the action ‘grasp’ the inside can is
executed. This new scenario is formally represented by the interpretation I:

{on(a, bd)y, on(b, bd)o, ~holding(a)o, ~holding(b)o, — falling(a)o, = falling(b)o,

 falling(bd)o, grasp(b)o, ~grasp(a)o, falling(bd)y,
on(a,bd)1, —on(b,bd)1, —holding(a);, holding(b)1, falling(a)1, —falling(b)1}

which is not a model of the causal theory T with two objects a, b, time names 0, 1,
and the constant bd standing for the board. The interpretation I also expresses
the knowledge that a and bd will fall after the action grasp(b) occurs in the
setting.

Using our inductive approach, the robot obtains a new causal theory tr(T, I),
which contains all causal rules in 7" and the new rule: A\, = falling(bd).
Note that, every atom occurred in [ is syntactically related to falling(bd);. Let
M be the set of models of T', we can see that none of interpretations in M satisfy
falling(bd); and falling(bd); € I, then every atom is semantically related to
falling(bd); under some set of literals w.r.t. M U {I}.

The learned rule can be further generalized by changing 0 to ¢, 1 to t 4+ 1,
and some constants like a, b, and bd can be replaced by variables.

According to Proposition 2, I is a model of tr(T,I) and every model of T
is still a model of ¢r(T,I). Then the robot uses tr(T,I) as the new model of
the action domain and is aware that if it picks up b in the setting then a has
a possibility to fall. Thus, to accomplish the task, the robot would compute a
more cautious plan in which it removes a from the sticking-out end of the board
first before grasping b°.

3 A similar case study is featured in the video demo “Towards Robot Learning from
Comparative Demonstration” at http://ai.ustc.edu.cn/en/demo/, where the robot
is taught with a positive and a negative example in the same setting.



5 Discussion and Conclusion

We use nonmonotonic causal theories to model the action domains of the robot,
mainly because:

— They are convenient to formalize action domains, including the frame prob-
lem, indirect effects of actions, concurrent actions, nondeterministic actions,
ramification and qualification constraints.

— They can be easily computed by existing sophisticated solvers. The prob-
lem of computing models of a causal theory can be equivalently translated
to computing answer sets of a logic program with negative as failure [6]
and solved by ASP solvers. The causal theory can also be converted to a
propositional theory, whose models can be computed by SAT solvers [6, 5].

— More importantly, this effort provides an evidence that the modification of
a theory for an action domain is convenient by using nonmonotonic causal
theories. Intuitively, an enlarged causal theory most likely covers new in-
terpretations and original models as its models this way: if no abnormal
features related to the service task are observed, then the original knowledge
still works; otherwise, the newly generated knowledge from the new scenario
should be used. Both the original and the new knowledge are integrated con-
veniently into the enlarged theory as a whole due to the nonmonotonicity of
causal theories.

However, there is few work on inductive learning in nonmonotonic causal

theories. On the other hand, the problem is closely related to the context of
Nonmonotonic Inductive Logic Programming [7]. Sakama [8] proposed an induc-
tive learning approach in nonmonotonic logic programs. Our approach differs
from Sakama’s approach in that we may need to modify rules in the original
causal theory while Sakama keeps the rules in the original program unchanged.
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